

SHRI SHANKARACHARYA TECHNICAL CAMPUS, BHILAI (An Autonomous Institute affiliated to CSVTU, Bhilai)

(An Autonomous Institute affiliated to CSVTU, Bhilai) SCHEME OF TEACHING AND EXAMINATION (Effective from 2020-2021 Batch) M.Tech (Electronics & Telecommunication(VLSI Design)) Third Semester

S		Subject	Subject	Subject Periods		per «	Scheme of Exam		Exam	Total	Creadit
S. No.	Board of Study	Subject	Code	L	Т	Р	Theo ESE	ry/Prac	ctical	Marks	L+(T+P)/2
1.	Electronics & Telecommunication	Analog VLSI	ET231301	3	1	-	100	20	20	140	4
2.	Refer Ta	ble- III	Elective - III	3	1	-	100	20	20	140	4
3.	Electronics & Telecommunication	Project	ET231391	-		28	100		100	200	14
4.	Electronics & Telecommunication	Seminar on Industrial Training	ET231392	-		3			20	20	2
	Total			6	2	31	300	40	160	500	24

Table III

Elective-III					
Sr.No.	Board of Study	Subject	Subject Code		
1	Electronics & Telecommunication	Algorithm for VLSI Design Automation	ET231321		
2	Electronics & Telecommunication	ASIC Design	ET231322		
3	Electronics & Telecommunication	Design of Semiconductor	ET231323		
		Memories			

			1.00	Applicable for AY
Chairman (AC)	Chairman (BoS)	Date of Release	Version	2021-22 Onwards

(An Autonomous Institute affiliated to CSVTU, Bhilai) SCHEME OF TEACHING AND EXAMINATION (Effective from 2020-2021 Batch) M.Tech (Electronics & Telecommunication(VLSI Design)) Third Semester

Subject Code :ET231301	Analog VLSI	L = 3	T = 1	$\mathbf{P} = 0$	Credits = 4
Evaluation	ESE	СТ	ТА	Total	ESE Duration
Scheme	100	20	20	140	3 Hours

Course Objective	Course Outcomes
The objective is to make the students	On successful completion of the course, the student will be
able to acquire knowledge on Analog	able to:
Circuit Design Using VLSI. The aim is	CO1:-Understands the Basic current mirrors and single stage
to impart skills to students for explain	amplifiers
Analog Circuit Design Using VLSI	CO2:-Analyze the Operational amplifier design
importance in the semiconductor	CO3:-Analyze the Sample and hold circuits.
industry and the various techniques.	CO4:-Understand the importance Data converters
	CO5:-Understand the basic Over sampling converters and
	filters

UNIT I

Basic current mirrors and single stage amplifiers – simple cmos current mirror – common source – common gate amplifier with current mirror active load – source flower with current mirror to supply bias current frequency response.[**5Hrs**]

UNIT – II

Operational amplifier design and compensation: two stage CMOS operational amplifier – feedback and operational amplifier compensation – advanced current mirrors – folded-cascode operational amplifier – current mirror operational amplifier.Comparator – charge injection error – latchedcomparators – BiCMOS comparators..[5Hrs]

UNIT – III

Sample and hold and switched capacitor circuits : MOS, cMOS and biMOS sample and hold circuits – switched capacitor circuits – basic operation and analysis first order and biquad filters – charge injection – switched[**5Hrs**]

UNIT – IV

Data converters : ideal d/a and a/d converters – quantization noise – performance limitations. nyquist rate d/a converters – decoder based converters – binary scaled converters – hybrid converters. nyquist rate a/d converters – integrating – successive approximation folding and pipelined – a/d converters.[5Hrs]

			1.00	Applicable for AY
Chairman (AC)	Chairman (BoS)	Date of Release	Version	2021-22 Onwards

CO2

CO3

CO4

C01

(An Autonomous Institute affiliated to CSVTU, Bhilai) SCHEME OF TEACHING AND EXAMINATION (Effective from 2020-2021 Batch) M.Tech (Electronics & Telecommunication(VLSI Design)) Third Semester

$\mathbf{UNIT} - \mathbf{V}$

CO5

Over sampling converters and filters : over sampling with and without noise haping – digital decimation filter – high order modulators – band pass over sampling converters – practical considerations – continuous time filters – mixers – PLLs - multipliers., **[5Hrs]**

Reference Books:

S. No.	Title	Authors	Edition	Publisher	
1	Analog Integrated Circuit	D.A. John and	1st Edition	John Wiley	
1	Design	Ken Martin	15t Edition	John Whey	
2	Apolog VI SI	Mohamed	1st Edition	Ma Crow hill	
2	Analog VLSI	Ismail		MC Graw IIII	

			1.00	Applicable for AY
Chairman (AC)	Chairman (BoS)	Date of Release	Version	2021-22 Onwards

(An Autonomous Institute affiliated to CSVTU, Bhilai) SCHEME OF TEACHING AND EXAMINATION (Effective from 2020-2021 Batch) M.Tech (Electronics & Telecommunication(VLSI Design)) Third Semester

Subject Code ET231321	Algorithm for VLSI Design Automation	L = 3	T = 1	P = 0	Credits = 4
Evaluation	ESE	СТ	ТА	Total	ESE Duration
Scheme	100	20	20	140	3 Hours

Course Objective	Course Outcomes
The objective is to make the students understand and conceptualize the basics of Algorithm for VLSI Design Automation. Students will be able to understand about physical chip design, hierarchy, memory and	On successful completion of the course, the student will be able to: CO1:- Outline the features of Logic synthesis & verification. CO2:- understand VLSI automation Algorithms: Partitioning. CO3:- Analyze the Global Routing. CO4:- Understand the Detailed routing.
memory element design concepts.	COS:- Design of Over the cell routing & via minimization.

UNIT- I: Logic synthesis & verification:

Introduction to combinational logic synthesis, Binary Decision Diagram, Hardware models for High-level synthesis.. [5Hrs]

UNIT-II :VLSI automation Algorithms: Partitioning:

problem formulation, classification of partitioning algorithms,

Group migration algorithms, simulated annealing & evolution, other partitioning algorithms. Placement, floor planning & pin assignment: problem formulation, simulation base placement algorithms, other placement algorithms, constraint based floor planning, floor planning algorithms for mixed block & cell design. General & channel pin assignment. [5Hrs]

UNIT - III: Global Routing:

Problem formulation, classification of global routing algorithms, Maze routing algorithm, line probe algorithm, Steiner Tree based algorithms, ILP based approaches. [5Hrs]

UNIT – IV: Detailed routing:

problem formulation, classification of routing algorithms, single layer routing algorithms, two layer channel routing algorithms, three layer channel routing algorithms, and switchbox routing algorithms. [5Hrs]

			1.00	Applicable for AY
Chairman (AC)	Chairman (BoS)	Date of Release	Version	2021-22 Onwards

CO1

CO2

CO3

CO4

(An Autonomous Institute affiliated to CSVTU, Bhilai) SCHEME OF TEACHING AND EXAMINATION (Effective from 2020-2021 Batch) M.Tech (Electronics & Telecommunication(VLSI Design)) Third Semester

UNIT – V: Over the cell routing & via minimization :

two layers over the cell routers, constrained & unconstrained via minimization. **Compaction:** problem formulation, one-dimensional compaction, two dimension-based compaction, hierarchical compaction. **[5Hrs]**

Text Books:

S.No.	Title	Authors	Edition	Publisher
1	Algorithms for VLSI physical	Naveed	Second	Kluwer Academic
1	design Automation	Shervani	Second	Publisher
2	Introduction to CAD for VLSI"	Trimburger	-	Kluwer Academic publisher, 2002

Reference Books:

S. No.	Title	Authors	Edition	Publisher
1	Algorithm and Data Structures for VLSI Design	Christophn Meinel & Thorsten Theobold	-	KAP, 2002.
2	Evolutionary Algorithm for VLSI	Rolf Drechsheler	Second	-

			1.00	Applicable for AY	
Chairman (AC)	Chairman (BoS)	Date of Release	Version	2021-22 Onwards	

CO5